

XIX Congresso della Società GITMO

RIUNIONE NAZIONALE GITMO

TORINO, CENTRO CONGRESSI LINGOTTO, 5 - 6 MAGGIO 2025

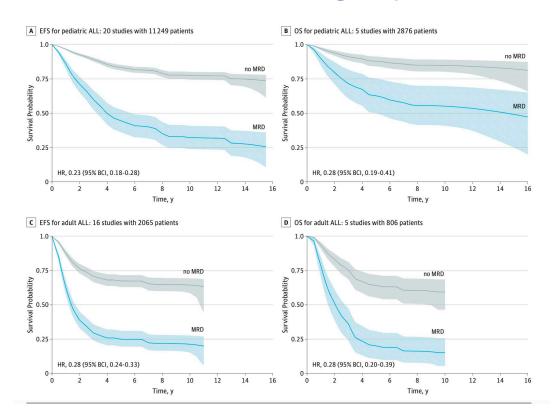
Impatto clinico della MRD nella LLA

Daniela Cilloni

Università degli Studi di Torino
AO Ordine Mauriziano

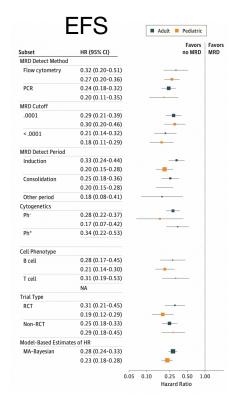
Disclosures of Daniela Cilloni

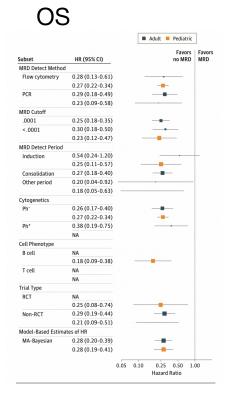
Company name	Research support	Employee	Consultant	Stockholder	Speakers bureau	Advisory board	Other
Abbvie					х	Х	
Astellas	x						
BMS					х	х	
Daiichi Sankyo						x	
GSK					x	х	
Novartis					X		



Measurable Residual Disease (MRD) in ALL

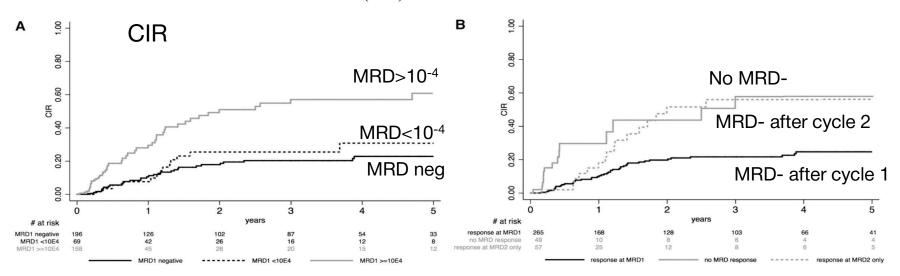
- 1) Why?
- 2) How?
- 3) Optimal time points and threshold
- 4) How should MRD guide decisions for HSCT during first line therapy?
- 5) How should MRD guide decisions for HSCT undergoing salvage therapy?


MRD has a strong impact on OS and EFS in ALL



Meta-analysis of 39 publications 13637 patients 2076 adult 11249 pediatric

Prognostic significance is consistent across therapies, methods of detection and times of MRD assessment, cutoff levels, and disease subtypes


XIX Congres

Oncogenetics and minimal residual disease are independent outcome predictors in adult patients with acute lymphoblastic leukemia

Kheira Beldjord, Sylvie Chevret, Vahid Asnafi, Françoise Huguet, Marie-Laure Boulland, Thibaut Leguay, Marie-Laure Boulland, Thibaut Leguay, Françoise Huguet, Marie-Laure Boulland, Thibaut Leguay, Marie-Laure Boulland, Thibaut Leguay, Marie-Laure Boulland, Marie-Laure Boulland, Thibaut Leguay, Marie-Laure Boulland, Marie-Laure B Xavier Thomas, Jean-Michel Cayuela, Nathalie Grardel, Yves Chalandon, Nicolas Boissel, Beat Schaefer, 10 Eric Delabesse, ⁴ Hélène Cavé, ¹¹ Patrice Chevallier, ¹² Agnès Buzyn, ³ Thierry Fest, ⁵ Oumedaly Reman, ¹³ Jean-Paul Vernant, 14 Véronique Lhéritier, 15 Marie C. Béné, 12 Marina Lafage, 16 Elizabeth Macintyre, 3 Norbert Ifrah, 17 and Hervé Dombret, on behalf of the Group for Research on Adult Acute Lymphoblastic Leukemia (GRAALL)

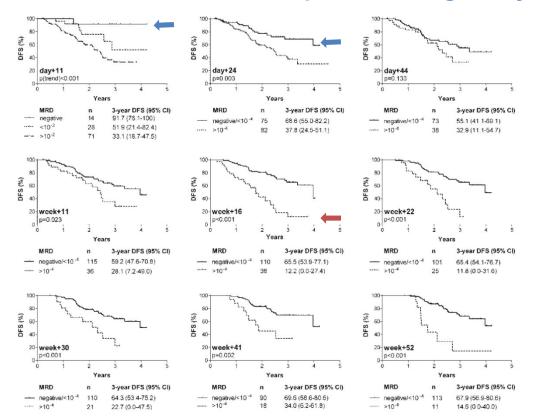
GRAALL 2003 GRAALL 2005

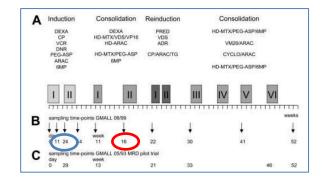
423 B-ALL (Ph-) and T-ALL in 1° CR

Post-induction MRD1 levels (evaluated at week 6)

- 1) Why?
- 2) **How?**
- 3) Optimal time points and threshold
- 4) How should MRD inform decisions for HSCT during first line therapy?
- 5) How should MRD inform decisions for HSCT undergoing salvage therapy?
- 6) How should MRD inform decisions for nontransplant interventions

Methods for MRD evaluation


Method	Specimen	Sensitivity	Advantages	Disadvantages
MFC for "difference from normal"	Fresh viable cells	~1 × 10 ⁻⁴	 Fast Relatively inexpensive Does not require pretreatment specimen 	 Lower sensitivity than other available MRD assays May fail to identify phenotypic shifts Interlaboratory variability
PCR for IG/TR gene rearrangements	DNA	~1 × 10 ⁻⁴ to 10 ⁻⁵	Specific for leukemic sequences	 Time-consuming and labor intensive Requires standardization (not done within the United States) Requires pretreatment specimen to identify leukemia clonotype Does not provide information about antigen expression
RT-PCR for BCR::ABL1	RNA	$\sim 1 \times 10^{-4}$ to 1 × 10 ⁻⁵	 Relatively simple to perform Uses standard primers used for diagnostic purposes 	 Applicable only to Ph-positive ALL (~1/3 of ALL cases) Not optimal for MRD assessment of multilineage Ph-positive ALL Does not provide information about antigen expression
NGS for IG/TR gene rearrangements	DNA	~1 × 10 ⁻⁶	 More sensitive than other available MRD assays Specific for leukemic sequences Only FDA-cleared assay for MRD in B-cell ALL (ie, clonoSEQ) 	 Relatively expensive (vs MFC or RT-PCR for BCR::ABL1) Requires pretreatment specimen to identify leukemia clonotype Does not provide information about antigen expression



- 1) Why?
- 2) How?
- 3) Optimal time points and threshold
- 4) How should MRD inform decisions for HSCT during first line therapy?
- 5) How should MRD inform decisions for HSCT undergoing salvage therapy?
- 6) How should MRD inform decisions for nontransplant interventions

Probability of disease-free survival (DFS) according to MRD results at 9 time-points during first year of therapy

GMALL trials 05/93 and 06/99 196 standard risk pts

The presence of MRD <10⁻⁴ at any timepoint, was strongly predictive of disease-free survival (DFS)

Very rapid disease clearance (MRD <10⁻⁴ at day 11 and 24 of induction) was associated with low risk for relapse

Bruggemann et al. Blood 2006

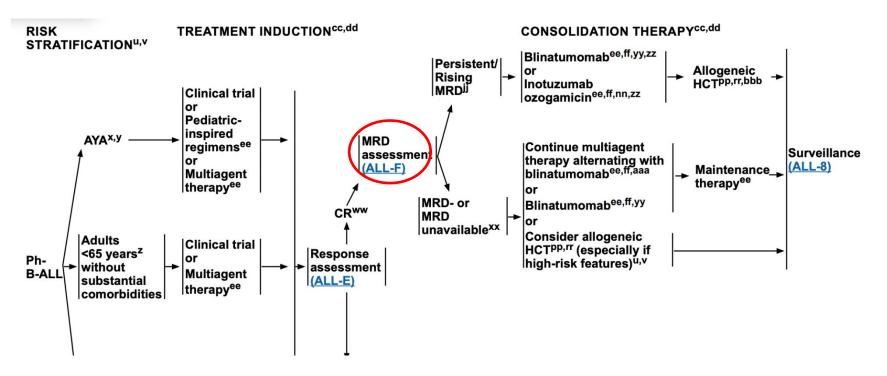
		Risk stratification criteria*							
National Study Group	Patient age (y)	Postinduction MRD	Cytogenetics/ genetics†	WBC (×10 ⁹ /L)	Miscellaneous				
GMALL (Germany)	<55	≥0.01% after consolidation (wk 16 onward)	KMT2A ⁺	>30 (B)	Late CR, pro-B, early/ mature-T				
GIMEMA (Italy)	≤65	≥0.01% after early consolidation (wk 10-16), any positivity (wk 22)	Adverse, KMT2A ⁺	>100	Early/mature-T				
HOVON (The Netherlands)	<40	≥0.01% after consolidation (wk 14-16)	Adverse KMT2A, hypodiploidy, complex karyotype	>30 (B), >100 (T)	Late CR				
PALG (Poland)	<55	≥0.1% after induction ≥0.01% during/after consolidation	KMT2A ⁺	>30 (B), >100 (T)	CNS ⁺				
UK NCRI ALL Group (United Kingdom)	<40	≥0.1% after induction and consolidation (mathematical risk model integrating MRD, cytogenetics and WBC)	Adverse	High count	_				
FALL (Finland)	<45	≥0.1% after consolidation block B	Abn11q23, hypodiploidy	>100	Late CR, d15 BM blasts >25%				
RALL (Russia)	<55	Positive during/after consolidation	t(4;11), t(1;19), KMT2A+	_	Age >30				
SVALL (Sweden)	<65	≥0.1% after consolidation	Hypodiploidy, KMT2A ⁺	_	EOI BM blasts >5%				
PETHEMA (Spain)	<55 (60 fit)	≥0.1% after induction ≥0.01% during/after consolidation	_	_	_				
GRAALL (France/ Belgium/ Switzerland)	<60	≥0.1% after induction at wk 6 or ≥0.01% after consolidation at wk 12	_	_	_				
CELL (Czech Republic)	<65	≥0.1% after induction ≥0.01% after consolidation	KMT2A ⁺	>30 (B)	Early/mature-T				

Good responders have MRD levels:
 <0.01%

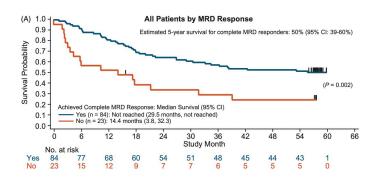
Optimal time points and thresholds

MRD<0.01%

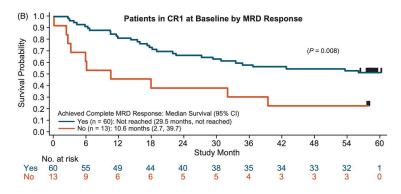
Pediatric patients: + 33 (post induction), + 78 (post-consolidation)

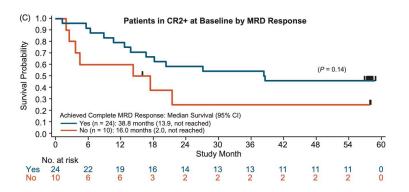

Adult patients: post induction and post consolidation

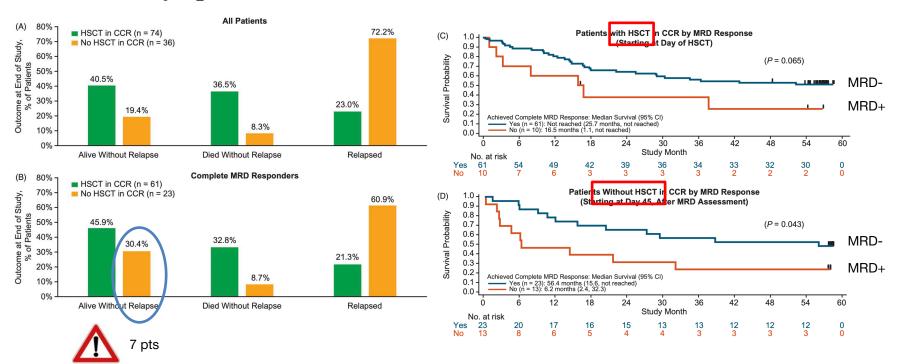
- 1) Why?
- 2) How?
- 3) Optimal time points and threshold
- 4) How should MRD inform decisions for HSCT during first line therapy?
- 5) How should MRD inform decisions for HSCT undergoing salvage therapy?

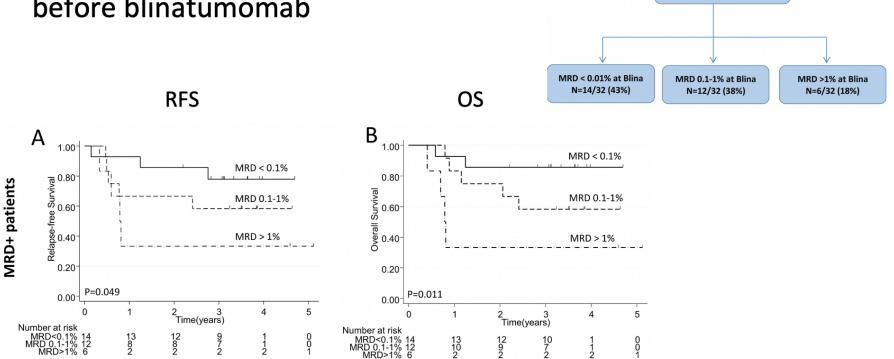


MRD post induction guides the post remission strategy

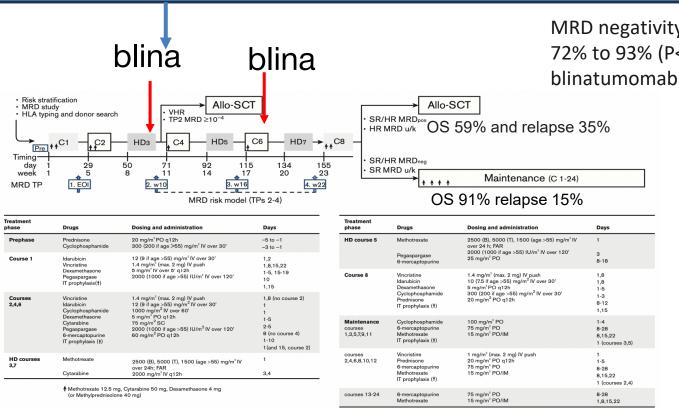



Blinatumomab for MRD+ ALL (Blast study)


77% of pts obtained MRD neg after 1 cycle of blinatumomab



Curative outcomes following blinatumomab in adults with minimal residual disease B-cell precursor acute lymphoblastic leukemia



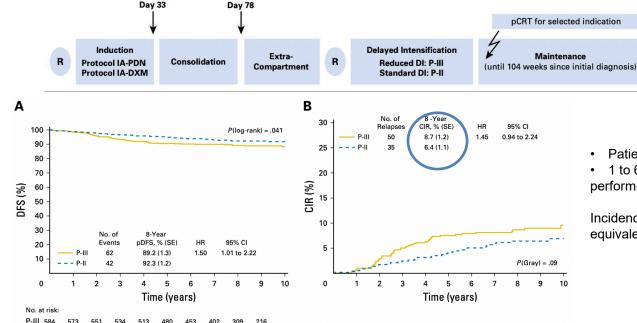
RFS and OS according to MRD levels before blinatumomab

MRD+ in CR1 patients N=35

GIMEMA LAL 2317: Primary end-point MRD negativity after cycle 3

MRD negativity increased from 72% to 93% (P<0.001) after blinatumomah

23/30 MRD+ (73%) became MRD-


MRD positivity identifies patients who can benefit from dose intensification

Treatment de-intensification is allowed in patients with early and deep MRD negativity?

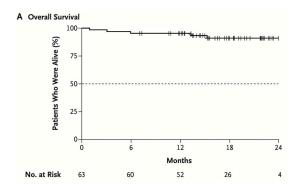
MRD Time Points

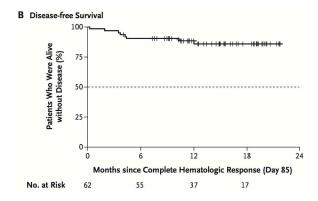
Reduced-Intensity Delayed Intensification in Standard-Risk Pediatric Acute Lymphoblastic Leukemia Defined by Undetectable Minimal Residual Disease: Results of an International Randomized Trial (AIEOP-BFM ALL 2000)

- Patients with ETV6-RUNX1-positive ALL
- 1 to 6 years of age performed equally well in both arms.


Incidence of death during remission was comparable equivalent toxicity

Schrappe M, et al. JCO 2018


Improved post-transplant outcomes since 2000 for Ph-positive acute lymphoblastic leukemia in first remission: A study from the EBMT Acute Leukemia Working Party

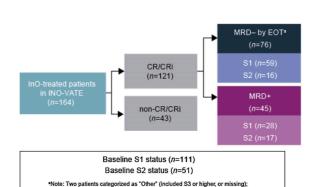

Ali Bazarbachi¹ | Myriam Labopin² | Iman Abou Dalle¹ |
Ibrahim Yakoub-Agha³ | Gérard Socié⁴ | Thomas Schroeder⁵ | Didier Blaise⁶ |
Xavier Poiré⁷ | Marie Balsat⁸ | Urpu Salmenniemi⁹ | Nicolaus Kröger¹⁰ |
Alexander Kulagin¹¹ | Eva Maria Wagner-Drouet¹² | Depei Wu¹³ |
Eolia Brissot¹⁴ | Arnon Nagler¹⁵ | Sebastian Giebel¹⁶ | Fabio Ciceri¹⁷ |
Mohamad Mohty¹⁴

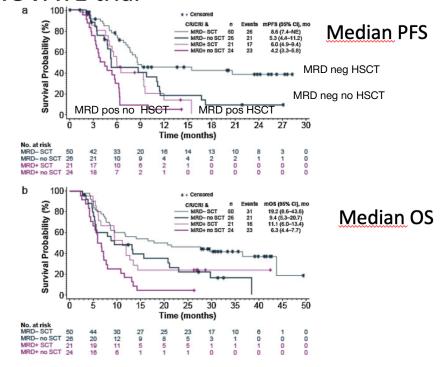
3 years		Relapse	NRM	LFS	os	chronic GVHD	Ext. chronic GVHD	GRFS
MRD-negative	2001-2005	34% [26-43]	25% [18-33]	41% [32-49]	52% [43-60]	47% [37-55]	26% [18-34]	34% [26-43]
	2006-2010	30% [25-35]	24% [20-29]	46% [41-51]	57.5% [52-62]	47% [41-52]	25% [21-30]	36% [31-41]
	2011-2015	24% [21-28]	23% [20-27]	52% [48-56.5]	64% [60-68]	47% [43-51]	23% [19-27]	40% [35-43]
	2016-2020	17% [14-20]	17% [14.5-20]	66% [62-70]	77% [73,5-80]	39% [35-42]	16% [13-19]	53% [49-57]
	p value	<0.001	0.013	<0.001	<0.001	0.006	0.001	0.001
MRD-positive	2001-2005	48% [39-57]	25% [17-33]	27% [19-35]	41% [32-49]	55% [45-64]	29% [20.5-38]	18% [11-25]
	2006-2010	34% [28.5-40]	24% [19.5-29.5]	42% [36-47]	53% [47-59.]	43% [37-49]	18% [14-23]	31% [26-37]
	2011-2015	32% [27-37]	21% [17-26]	47% [42-52]	66% [61-70]	46% [41-51]	21% [17-26]	35% [30-40]
	2016-2020	23% [19-27]	17% [14-21]	60% [55-55]	73% [68 77]	40% [35-44]	22% [18-25.5]	44% [39-48]
	p value	0.001	0.047	<0.001	<0.001	0.036	0.12	<0.001

Dasatinib–Blinatumomab for Ph-Positive Acute Lymphoblastic Leukemia in Adults

Robin Foà, M.D., Renato Bassan, M.D., Antonella Vitale, M.D., Loredana Elia, M.D., Alfonso Piciocchi, M.S., Maria-Cristina Puzzolo, Ph.D., Martina Canichella, M.D., Piera Viero, M.D., Felicetto Ferrara, M.D., Monia Lunghi, M.D., Francesco Fabbiano, M.D., Massimiliano Bonifacio, M.D., Nicola Fracchiolla, M.D., Paolo Di Bartolomeo, M.D., Alessandra Mancino, M.S., Maria-Stefania De Propris, Ph.D., Marco Vignetti, M.D., Anna Guarini, Ph.D., Alessandro Rambaldi, M.D., and Sabina Chiaretti, M.D., Ph.D., for the GIMEMA Investigators*

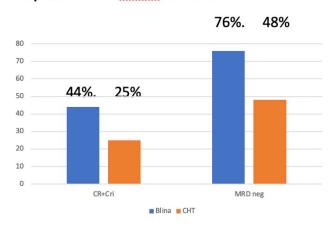
Table 2. Molecular Responses during Induction Therapy, at the End of Induction Therapy (Day 85), and after Each Blinatumomab Cycle.

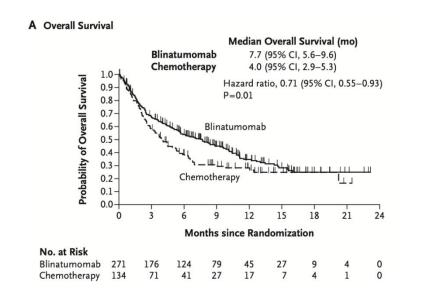

Assessment	No Molecular Response	r Complete Molecular Positive Nonquantifiable Response Response		Overall Molecular Response
		number of patients,	/total number (percent)	
Induction period				
Day 22	48/58 (83)	3/58 (5)	7/58 (12)	10/58 (17)
Day 45	43/60 (72)	9/60 (15)	8/60 (13)	17/60 (28)
Day 57	38/56 (68)	11/56 (20)	7/56 (12)	18/56 (32)
Day 85	42/59 (71)	6/59 (10)	11/59 (19)	17/59 (29)
Blinatumomab cycle				
After cycle 1	20/55 (36)	19/55 (35)	16/55 (29)	35/55 (64)
After cycle 2	22/55 (40)	23/55 (42)	10/55 (18)	33/55 (60)
After cycle 3	12/40 (30)	20/40 (50)	8/40 (20)	28/40 (70)
After cycle 4	7/36 (19)	17/36 (47)	12/36 (33)	29/36 (81)
After cycle 5	8/29 (28)	16/29 (55)	5/29 (17)	21/29 (72)


- 1) Why?
- 2) How?
- 3) Optimal time points and threshold
- 4) How should MRD inform decisions for HSCT during first line therapy?
- 5) How should MRD inform decisions for HSCT undergoing salvage therapy?

MRD negativity impacts on the outcome of ALL patients in the INOVATE trial

One of these excluded from S1+S2 subgroup breakdown among MRD- patients.




Jabbour et al. Leuk Res 2020

Blinatumomab versus Chemotherapy for Advanced Acute Lymphoblastic Leukemia

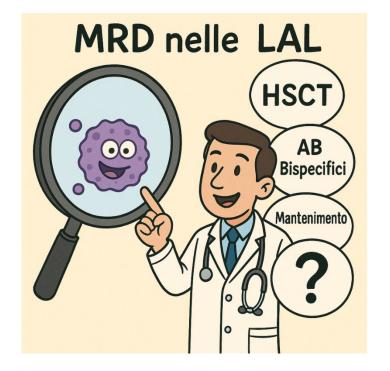
Responses of blina vs chemo

MRD in the setting of R/R ALL: Antibodies based study

Reference	Study	Eligibility	Patients, N	Median age (y)	Prior alloHSCT	ORR	Molecular response	Bridge to alloHSCT	OS estimate or median
Multicenter antibody- based studies									
Kantarjian et al, 2016 ¹²²	INO phase 3 (INO-VATE)	≥18 years R/R CD22 ⁺ ALL	109 (67% salvage 1)	47	16%	81%	63%	40%	7.7 mo
Topp et al, 2015 ¹⁹¹	Blinatumomab phase 2	≥18 years Ph-neg R/R ALL CR1 <12 months	189 (61% salvage 1)	36	34%	43%	35%	40%	6.1 months
Kantarjian et al, 2017 ¹⁹²	Blinatomomab phase 3 (TOWER)	≥18 years Ph-neg R/R ALL CR1 <12 months	271 (42% salvage 1)	37	35%	44%	36%	14%	7.7 months
Gokbuget et al, 2018 ⁶⁷	Blinatumomab phase 2 (BLAST)	≥18 years ALL in HCR MRD ≥ 0.1%	116 (65% CR1)	45	NR	NR	80% complete MRD response	67%	36.5 months
Brown et al, 2021 ¹⁹³	Blinatumomab COG AALL1331	1-30 years HR/IR ALL in first relapse	105 (all salvage 1)	9	NR	NR	79%	73%	79% at 24 months

Open issues

Significato della MRD positiva non quantificabile


Ruolo delle nuove tecniche: ddPCR, NGS

Significato della MRD misurata con tecniche molto sensibili 10⁻⁶

I pazienti che ottengono una negativizzazione profonda della MRD possono evitare il trapianto?

MRD: Misura, Rifletti, Decidi

